6 research outputs found

    A Virtual Infrastructure for Mitigating Typical Challenges in Sensor Networks

    Get PDF
    Sensor networks have their own distinguishing characteristics that set them apart from other types of networks. Typically, the sensors are deployed in large numbers and in random fashion and the resulting sensor network is expected to self-organize in support of the mission for which it was deployed. Because of the random deployment of sensors that are often scattered from an overflying aircraft, the resulting network is not easy to manage since the sensors do not know their location, do not know how to aggregate their sensory data and where and how to route the aggregated data. The limited energy budget available to sensors makes things much worse. To save their energy, sensors have to sleep and wake up asynchronously. However, while promoting energy awareness, these actions continually change the underlying network topology and make the basic network protocols more complex. Several techniques have been proposed in different areas of sensor networks. Most of these techniques attempt to solve one problem in isolation from the others, hence protocol designers have to face the same common challenges again and again. This, in turn, has a direct impact on the complexity of the proposed protocols and on energy consumption. Instead of using this approach we propose to construct a lightweight backbone that can help mitigate many of the typical challenges in sensor networks and allow the development of simpler network protocols. Our backbone construction protocol starts by tiling the area around each sink using identical regular hexagons. After that, the closest sensor to the center of each of these hexagons is determined—we refer to these sensors as backbone sensors. We define a ternary coordinate system to refer to hexagons. The resulting system provides a complete set of communication paths that can be used by any geographic routing technique to simplify data communication across the network. We show how the constructed backbone can help mitigate many of the typical challenges inherent to sensor networks. In addition to sensor localization, the network backbone provides an implicit clustering mechanism in which each hexagon represents a cluster mud the backbone sensor around its center represents the cluster head. As cluster heads, backbone sensors can be used to coordinate task assignment, workforce selection, and data aggregation for different sensing tasks. They also can be used to locally synchronize and adjust the duty cycle of non-backbone sensors in their neighborhood. Finally, we propose “Backbone Switching”, a technique that creates alternative backbones and periodically switches between them in order to balance energy consumption among sensors by distributing the additional load of being part of the backbone over larger number of sensors

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The history, fungal biodiversity, conservation, and future perspectives for mycology in Egypt

    No full text
    corecore